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Abstract. A detailed experimental study of the steady-state temperature in a 3D optical lattice for cesium
has been performed for a wide range of detunings. Specifically, we have investigated the situation with
the cooling and trapping light detuned far red of a (Jg → Je = Jg + 1)-transition, where the blue detuned
interaction with a (Jg → Je = Jg)-transition can not be neglected. We find that the temperature scales
with the optical potential due to the interaction with just the (Jg → Je = Jg + 1)-transition. This indicates
that blue Sisyphus cooling has essentially no effect on the dynamics of the system, when there exists a
neighbouring red detuned transition.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.75.Be Atom and neutron optics

Optical lattices consist of an array of potential wells, cre-
ated by the interference of two or more laser beams, where
cold atoms can be trapped. Thus, a periodic structure of
matter is formed [1,2]. They have for example been used as
a general platform to study various fundamental phenom-
ena, as a means of getting very cold samples for precision
measurements, as well as for studies of analogues to solid-
state physics (cf. [1] and references therein). For a near-
resonance optical lattice (NROL), the dynamics of the
atomic motion is highly influenced by spontaneous emis-
sion and optical pumping, which always provides heating,
and under favourable conditions also inherent cooling. In
the standard situation for a NROL, the optical lattice laser
beams are detuned below (red of) a (Jg → Je = Jg + 1)-
transition [1,3], where Jg and Je are the angular momen-
tum quantum numbers of the ground and excited states of
an atom. In contrast, a (Jg → Je = Jg)-transition requires
positive (blue) detuning. This configuration carries the ex-
tra attraction that for high enough angular momentum,
atoms can be trapped in dark states which in principle
means that there is no lower limit for the temperature. In
a real physical system, there is usually a manifold of upper
levels that can all have important influence on the cooling
and heating mechanisms simultaneously. With few excep-
tions [4,5] the role of neighbouring transitions for red and
blue Sisyphus cooling has not been taken into account
in previous work. In this paper we present a thorough
experimental investigation of the steady-state tempera-
ture in a three dimensional (3D) NROL tuned to a range
of laser frequencies between the (Fg = 4→ Fe = 5)- and
(Fg = 4→ Fe = 4)-transitions of the D2 line in cesium at
852 nm (6s 2S1/2 → 6p 2P3/2). These two resonances (the
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Fig. 1. Hyperfine structure manifold in the excited level
6p 2P3/2. The frequency scale is given with F = 5 as the origin.
The separation between hfs-states is also given in units of the
natural linewidth.

red and the blue transition) are separated by 48.1Γ , where
Γ/2π = 5.22 MHz is the natural linewidth of the transi-
tion. The third allowed transition (Fg = 4→ Fe = 3) is
separated from (Fg = 4→ Fe = 4) by 38.6Γ . In Figure 1
the upper level hyperfine manifold is displayed.

In the commonly accepted semi-classical model for the
cooling process in a NROL (Sisyphus cooling) [3], atoms
climb sinusoidal potential wells, thus losing kinetic en-
ergy and gaining potential energy. The higher they climb,
the bigger the probability gets that they will be optically
pumped into a magnetic substate with lower potential
energy. In this way kinetic energy is extracted from the
atoms so efficiently that they can become cold enough
to get trapped in local minima of the light shift poten-
tial. The steady-state temperature is predicted to scale
linearly with light shift (kBT ∝ U ∝ I/|∆| where U is the
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modulation depth of the light shift potential, I is the in-
tensity, and ∆ is the detuning from resonance), which has
been confirmed experimentally in optical molasses with-
out spatial order [6] as well as in controlled optical lat-
tices [7,8]. According to the model referred to, this comes
about because the steady-state temperature is assumed
to emerge from a balance between cooling and heating ef-
fects. The cooling rate is independent of intensity, whereas
the heating scales as the scattering rate (∝ I/∆2), and
thus the temperature will decrease linearly as the inten-
sity is lowered. In this work, as in most other experimental
investigations (e.g. [7,8]) the optical lattice actually oper-
ates in the so-called oscillating regime, and the theoretical
dragged-atom model of [3] may not be appropriate. Nev-
ertheless, the linear scaling of the temperature with light
shift still holds.

For red Sisyphus cooling on a (Jg → Je = Jg + 1)-
transition, the atoms will be preferentially pumped into
the magnetic sublevel MJg = Jg around points where
the polarization is σ+ [3]. This state couples stronger
to the σ+-field than it does to the σ−-field. Therefore
optical pumping will at all positions tend to transfer
atoms to the lowest local potential, and thus extract
energy from the system. Also for blue Sisyphus cooling
on a (Jg → Je = Jg)-transition, the atoms will again be
pumped into MJg = Jg around a σ+-site. Once there the
atom can only interact with the σ−-light. Since this field
has a minimum at this point, the light shift has to be pos-
itive in order to make this into a potential minimum, and
thus the detuning has to be blue. One main interest in
blue Sisyphus cooling stems from the fact that atoms are
pumped into a state where the interaction with the light
field is minimized. Thereby temperature and density lim-
iting effects should be less severe. Blue Sisyphus cooling
has been used in various configurations [9–11], but to our
knowledge no detailed experimental study and comparison
to red Sisyphus cooling has been made.

For most cases the actual situation is one where
both cooling schemes may coexist. Consider for ex-
ample a situation where the laser is detuned between
a (Jg = 1/2→ Je = 3/2)- and a (Jg = 1/2→ Je = 1/2)-
transition. If one follows the derivation of the friction co-
efficient and of the diffusion constant in [3] and adds terms
corresponding to the added interaction with an extra level,
one gets the following expression for the steady state tem-
perature:

kBT ∝
D

α
∝ ~Ω

2

8

∆1/2

2∆3/2
+

∆3/2

2∆1/2
χ2 + χ

∆1/2 + χ∆3/2
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Here Ω is the Rabi frequency at the center of a poten-
tial well, defined as Ω2 = (Γ 2/2)(I/I0), I is the inten-
sity, I0 is the saturation intensity, ∆3/2 and ∆1/2 are the
detunings from the respective upper levels, and χ is the
relative strength of the two transitions. In the standard
situation where ∆3/2 � ∆1/2 this reduces to the familiar
kBT ∝ IΩ2/∆3/2. Similarly, close to the blue transition
we get kBT ∝ IΩ2/∆1/2. For higher angular momenta red

Sisyphus cooling has been found to retain the temperature
scaling from the simplified model in [3]. For that reason,
an intuitive assumption from the simplistic model above
is that close to any transition, for blue as well as for red
Sisyphus cooling, the temperature should scale as the in-
tensity divided with the detuning to the close transition.
For the present experiment this suggests that when we
start close to the (Fg = 4→ Fe = 5)-transition and tune
further and further away, towards (Fg = 4→ Fe = 4), the
previously confirmed [6–8] relation kBT ∝ IΩ2/∆5 ∝ U5

(where U5 is the modulation of the light shift potential
taking only the red transition into account, and ∆5 is the
detuning from the red transition) might no longer hold.
Instead the temperature should get a more complicated
dependence on the laser frequency, which subsequently
turns into kBT ∝ IΩ2/∆4 ∝ U4 as the next hyperfine
transition is approached. An even more straightforward
assumption would be that the temperature is always pro-
portional to the modulation depth of the total optical po-
tential, kBT ∝ Utot = U5 + U4 + U3.

With high angular momenta the ground state sub-
levels are coupled through stimulated Raman transitions.
Including this in the analysis makes the interaction Hamil-
tonian non-diagonal and a solution yields the so-called
adiabatic potentials [1,2,12]. Especially for blue Sisyphus
cooling, this changes the nature of the cooling process.
Here, the lowest state will be decoupled from the radiation
field, independent of position. There is still a slight proba-
bility that the atom will get optically pumped to another
potential though, and this will primarily happen where
the upper potential has a minimum. Before the atoms
is pumped back to the uncoupled state, it will have to
move uphill, and thus, there will be a friction mechanism
even for this configuration. This was examined in [11] for
a blue-detuned (Jg → Je = Jg − 1)-transition, where the
temperature was found not to scale as the intensity di-
vided by the detuning to the blue transition.

In the original Sisyphus cooling scheme, the atom has
to be energetic enough to make it up one half period of
the diabatic potential (where the above mentioned cou-
pling can be ignored) in order to be optically pumped and
cooled. Therefore one could assume that the adiabatic po-
tentials are irrelevant (see [12] for a detailed discussion).
Even if this hypothesis is true for hot (untrapped) atoms
(the jumping regime), the fact that the cooling continues
even when the atoms are very well localized at the bot-
tom of the potential wells (the oscillating regime), suggests
that there may be additional cooling mechanisms for cold
(trapped) atoms. There have been speculations about dif-
ferent local cooling mechanisms [12]. For example, for a
multilevel system an atom oscillates on the lowest poten-
tial curve, and near its classical turning point, the proba-
bility for the atom to get optically pumped into the second
lowest potential is as high as it will get. If it is pumped, it
will then slide back on a more shallow potential towards
the trap center, where the probability for it to be opti-
cally pumped back to the lowest potential is very high.
In this model, the cooling rate, and the steady-state tem-
perature ought to be related to the difference in curvature
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Fig. 2. The adiabatic potentials for all nine sub-levels of Fg = 4 at a detuning from the (Fg = 4→ Fe = 5)-transition of (a)
∆5 = −20Γ and (b) ∆5 = −40Γ . The full lines show the potential when all allowed transitions have been taken into account
in the derivation, whereas the dashed lines show the potentials due only to the (Fg = 4→ Fe = 5)-transition.

between the lowermost potentials. Close to the red tran-
sition, this quantity scales as U5 and previous measure-
ments do not disagree with the hypothesis. As the blue
transition is approached though, the lowest adiabatic po-
tential of the Utot-manifold is still almost identical to the
lowest U5-potential, whereas all higher potentials change
dramatically. This is illustrated in Figure 2, and can eas-
ily be understood from the fact that the lowest state in
a pure (Jg → Je = Jg)-transition is decoupled from the
light, and thus the blue transitions contribution to the
lowermost adiabatic potential is minimal. So, if this local
Sisyphus model accurately describes the cooling process,
U5 ought not to be a correct scaling parameter for the
temperature as the detuning is increased. On the other
hand, if the equilibrium temperature is determined solely
by the curvature of the lowest potential, the temperature
should scale essentially as U5 through the whole investi-
gated interval. For a single red transition, the adiabatic
and diabatic potentials have the same curvatures and the
same vibrational quantization close to the bottom. In our
mixed case however, the curvature of the total adiabatic
potential will agree with U5, rather than Utot, within the
level of our experimental uncertainties. This is illustrated
in Figure 3, which shows a plot (for the 1D-case) of cal-
culated curvatures, as a function of detuning, in terms of
the squares of the oscillation frequencies in an harmonic
oscillator approximation.

In our experiment a magneto-optical trap (MOT) is
loaded from a chirp-slowed atomic beam. The MOT is
formed by 3 mutually orthogonal pairs of laser beams
(1 cm diameter, 20 and 10 mW power). The magnetic field
gradient is 0.1 T/m in the central region of the trap. The
number of atoms in the initial MOT are about 2 millions,
the 1/e-diameter is 0.4 mm, and the density is in the order
of 5× 1010 cm−3. After about two seconds of loading, the
magnetic field is switched off and the atoms are further
cooled for about 15 milliseconds in a 3D optical molasses,
yielding a temperature of 3–4 µK. The molasses beams
are then switched off and the optical lattice beams are
switched on simultaneously. The lattice is a 3D general-

Fig. 3. The curvature at the bottom of the lowest potential as
a function of detuning from the (Fg = 4→ Fe = 5)-transition
at a constant intensity. The dashed line refers to the diabatic
potential due to the (Fg = 4→ Fe = 5)-transition, U5, the dot-
ted line to the total diabatic potential, Utot = U5 + U4 + U3,
and the full line to the total adiabatic potential.

ization of the 1D lin ⊥ lin configuration created by two
orthogonally polarized pairs of laser beams that propa-
gate in the yz- and xz-plane respectively. The angle be-
tween the beams of each pair is 90◦, and each beam forms
an angle of θ = 45◦ with the (vertical) quantization (z-)
axis. This results in a tetragonal structure with alternat-
ing sites of pure σ+- and σ−-light, where potential min-
ima are formed. The lattice constants are az = λ/2

√
2

and ax,y = λ/
√

2. The lattice beams are spatially filtered
with an optical fiber. Their profile is made flat-top with a
diameter of 2 mm by imaging a pinhole in the interaction
region. The beam intensities range from 0.4 mW/cm2 to
3 mW/cm2. After letting the atoms equilibrate for typi-
cally 10–15 ms, the lattice beams are switched off and the
Gaussian velocity distribution along the z-axis is mea-
sured with a time-of flight technique. The probe beam
(height 0.5 mm) is placed 5 cm below the lattice. The
laser frequency of the lattice beams is detuned red of
the (Fg = 4→ Fe = 5)-transition. This detuning is varied
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Fig. 4. Kinetic temperature for four different detunings (see inset) as a function of light shift, U5, due to the (Fg = 4→ Fe = 5)-
transition, and (b) as a function of the light shift of all allowed transitions, Utot = U5 +U4 +U3. The light shift is given in units
of the Cs recoil energy.

between ∆5 = −3Γ and ∆5 = −47Γ . For detunings be-
tween∆5 = −40Γ and∆5 = −47Γ we notice a destructive
effect of the lattice light on the MOT if the lattice light is
kept on during loading and precooling. This effect peaks at
approximately 1/2Γ to 1Γ blue of the (Fg = 4→ Fe = 4)-
transition and we attribute it to blue Doppler heating.
For each detuning the temperature is measured as a func-
tion of laser intensity. The repumper mostly operates at
the (Fg = 3→ Fe = 4)-transition. For detunings between
∆5 = −40Γ and ∆5 = −47Γ we have also tried to tune
the repumper to the (Fg = 3→ Fe = 3)-transition, with-
out seeing any significant change in temperature. The laser
beam intensity is derived by measuring the power and the
diameter of the optical lattice beams.

Figure 4a shows data for various detunings
(∆5/Γ = −10,−20,−30,−40), where the kinetic tem-
perature is plotted against U5, the modulation depth
of the red transition, normalized to the recoil energy,
ER = ~ωR = ~2k2/2m (ωR/2π = 2.07 kHz and m = 133 u
is the atomic mass for Cs). Here we ignore the contri-
butions of other transitions and obtain this diabatic
potential by just keeping the diagonal elements of the
effective ground state Hamiltonian. The light shift
potential (excluding saturation) is

U5 =
~∆5

2

(
44
45

)
Ω2

2∆2
5

=
~
2

(
44
45

)
Γ 2I

4I0∆5
(2)

where I = 8Ibeam is the laser intensity at pure σ+/σ−-sites
and I0 = 1.1 mW/cm2 for the D2-line in Cs. The factor
44/45 originates from the difference of the squares of the
Clebsch-Gordan coefficients (CGC) connecting MFg = ±4

to MFe = ±3 and MFe = ±5. We see that the tempera-
ture scales linearly with light shift in a wide range even
close to the blue transition. After reaching a minimum,
the temperature increases rapidly at low intensities. The
same data is plotted in Figure 4b, this time scaled with
the total diabatic potential Utot = U5 + U4 + U3. U4

and U3 are the diabatic light shift potentials due to
the (Fg = 4→ Fe = 4) and (Fg = 4→ Fe = 3)-transitions
and are

U4 =
~∆4

2

(
7
60

)
Ω2

2∆2
4

, (3)

U3 =
~∆3

2

(
21
84

)
Ω2

2∆2
3

· (4)

The factors 7/60 and 21/84 are due to the CGC and the
relative ratio of the reduced dipole moment di between the
transitions d5:d4:d3 = 12:7:3. Figure 4b clearly shows that
Utot does not provide a global scaling parameter. In Fig-
ure 5 we plot slopes of the linear parts of curves such as the
ones in Figure 4, as a function of detuning ∆5. The points
scatter around a constant value of ξ5 = 12.6(1.4) nK/ER

when the temperature is scaled against U5 (Fig. 5a) even
for detunings close to the (Fg = 4→ Fe = 4)-resonance
(∆5 = −48.1Γ ). This is not the case in Figure 5b where
instead Utot has been applied. The error of 12% in the
slopes is the sum of the maximum possible systematic er-
rors (dominated by the uncertainty in the absolute value
of the intensity of 10%) and the run to run scatter in tem-
perature measurements.
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(a) (b)

Fig. 5. Measured slopes of temperature versus light shift, as a function of detuning; (a) is obtained by using U5, and (b) by
using Utot, as a scaling parameter for the temperature. The solid line is a linear fit that here mainly serves the purpose of a
guide for the eye.

Our measured value of ξ5 is smaller than the one re-
ported by Gatzke et al. (ξ5 = 24(2.8) nK/ER) [7] by ap-
proximately a factor of 2 even though the lattice config-
uration is identical. This could be explained by the fact
that in contrast to the work by Gatzke et al. we measure
the kinetic temperature parallel to the quantization axis z.
In our θ = 45◦ configuration the lattice spacing in the z-
direction is half as big as in the transverse direction which
could lead to an anisotropy in temperature. To our knowl-
edge there has been no previous experimental indications
of different temperatures in different direction, however
theoretical investigations show that such differences may
occur [13,15].

The fact that the U5 appears to provide a global scaling
through the whole interval indicates that there is no effect
on the dynamics of the atoms from blue Sisyphus cooling
for the relevant range of parameter. Even very close to the
blue transition, where the red transition is detuned by al-
most 50 linewidths, the latter is the one that matters. The
regular behaviour with U5 also excludes the local Sisyphus
model. In themselves, our measured temperature scalings
do not disagree with a hypothesis that it is the curva-
ture of the total adiabatic potential that determines the
steady-state temperature. That would also explain differ-
ent temperatures along different directions. However, the
curvature along the z-axis is a factor of

√
2 higher that

along the transversal directions, but our measured slopes
of temperature-versus-intensity-curves are a factor of two
lower than those in [7]. Therefore, we also exclude the
curvature as a scaling parameter for the temperature.

In conclusion we have measured the steady-state
temperature in a 3D optical lattice for laser fre-
quencies detuned between the (Fg = 4→ Fe = 5) and
(Fg = 4→ Fe = 4)-transitions within the D2-line in Cs.
We find that the temperature does not scale as the mod-
ulation depth of the total diabatic potential. Instead the

data indicate that the temperature in a particular direc-
tion is determined solely by the intensity and the detuning
from the (Fg = 4→ Fe = 5)-transition and that the ap-
pearance of neighbouring transitions has no direct influ-
ence. Furthermore, our measured value of ξ5 suggests that
there is an anisotropy in temperature for the used configu-
ration. The reported results can not easily be explained by
conventional semiclassical models of laser cooling [3,16].
We hope that this work stimulates a thorough theoretical
investigation of the cooling process for the setup we pre-
sented. A rigorous quantum Monte Carlo simulation [13]
could possibly clarify the somewhat confusing results.
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